Accurate classification of brain gliomas by discriminate dictionary learning based on projective dictionary pair learning of proton magnetic resonance spectra.
نویسندگان
چکیده
Proton magnetic resonance spectroscopy is a powerful noninvasive technique that complements the structural images of cMRI, which aids biomedical and clinical researches, by identifying and visualizing the compositions of various metabolites within the tissues of interest. However, accurate classification of proton magnetic resonance spectroscopy is still a challenging issue in clinics due to low signal-to-noise ratio, overlapping peaks of metabolites, and the presence of background macromolecules. This paper evaluates the performance of a discriminate dictionary learning classifiers based on projective dictionary pair learning method for brain gliomas proton magnetic resonance spectroscopy spectra classification task, and the result were compared with the sub-dictionary learning methods. The proton magnetic resonance spectroscopy data contain a total of 150 spectra (74 healthy, 23 grade II, 23 grade III, and 30 grade IV) from two databases. The datasets from both databases were first coupled together, followed by column normalization. The Kennard-Stone algorithm was used to split the datasets into its training and test sets. Performance comparison based on the overall accuracy, sensitivity, specificity, and precision was conducted. Based on the overall accuracy of our classification scheme, the dictionary pair learning method was found to outperform the sub-dictionary learning methods 97.78% compared with 68.89%, respectively. Copyright © 2016 John Wiley & Sons, Ltd.
منابع مشابه
Speech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملA Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملDetection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine
Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in chemistry : MRC
دوره 55 4 شماره
صفحات -
تاریخ انتشار 2017